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A little bit of school physics (in 1D)

Let γ(x) denote the conductivity of the wire( ‘length’ [0,L]) at x.

Resistivity
R(x, y) =

∫ x

y
1

γ(z)
dz. For steady state current, by Ohm’s law:

u(x)− u(0)︸ ︷︷ ︸
Voltage difference
between x and 0

= −I ·R(x, 0) = −I

∫ x

0

dy

γ(y)

Differentiate both side: γ(x)u′(x) = −I

diff⇒ (γ(x)u′(x))′ = 0 (1)

What can we measure directly?
(making u(0) = 0, I = 1)

{u(0), u(L), γ(0)u′(0), γ(L)u′(L)}={0,
∫ L

0

dy

γ(y)
, 1, 1}
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In higher dimension

Ω′ ⊂ Ω ⊂ Rn.

i(x)︸︷︷︸
not independent of x

= −γ(x)∇u(x) (2)

Steady state current:∫
∂Ω′ i(x) · ν(x)dS(x) = 0.

IBP⇒
∫
Ω′

∇ · i(x)dx = 0 ∀Ω′ ⊂ Ω

⇒ ∇ · i(x) = ∇ · (γ(x)∇u(x)) = 0 inΩ
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Prelude

In general we can get an equation in higher dimension analogous to (1):

Voltage equation

∇ · (γ(x)∇u(x)) = 0, x ∈ Ω (3)

Define
S := {(f, g) ∈ C∞(∂Ω)× C∞(∂Ω) : f = u|∂Ω, g = γ ∂u

∂ν
|∂Ω, u satisfies (3)}.

Λγ(f)︸ ︷︷ ︸
DtN map

= g is a well defined map. The impedence Tomography problem is to infer data about γ

from the DtN map.
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Sobolev Spaces

Definition (Hk(Ω) space)

Hk(Ω) = {u :
(

∂
∂x1

)α1

· · ·
(

∂
∂xn

)αn

u ∈ L2(Ω) in weak sense with
∑n

j=1 αj ≤ k}

✇ The space C∞(Ω̄) ∩Hk(Ω) is dense in Hk(Ω).

✇ For Ω to be a bounded domain with smooth boundary we can extend any
u ∈ H1(Ω) to its boundary, in fact on the whole Rn.

We will refer Tr(u) := u|∂Ω for Hk functions (Trace of u).

Definition (TrHk(∂Ω) Space)

TrHk(Ω) := {v ∈ L2(∂Ω) : ∃u ∈ Hk(Ω) s.t. Tr(u) = v}
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Now the definition...

Consider the following Partial Differential equation:

Dirichlet Problem

∇ · (γ(x)∇u) = 0 onΩ

u = f on ∂Ω
(4)

For f ∈ TrH2(∂Ω), we will put γ(x) ∈ C1(Ω̄). The dirichlet problem admits unique weak
solution for such γ(x) if γ(x) > ϵ > 0.

Definition (DtN Map)

Λγf := (γ∇u(x)) · ν(x)|∂Ω. ν(x) is the outward normal vector at point x ∈ ∂Ω.
The normal derivative of the solution on the boundary is generally referred as ‘Neumann data’.

In weak sense the range of Λγ is subset of the dual space H
1
2 (∂Ω).
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Example on Half-Space

Figure: Upper half
plane in R3. Note
the boundary is
actually R2

The Laplacian: ∆u := ∂2u
∂x2

1

+ ∂2u
∂x2

2
+...+ ∂2u

∂x2
n

Take γ(x) to be Id so that γ∇u(x) = ∇u(x).

Take Ω = Rn × (0,∞)︸ ︷︷ ︸
Rn+1
+ ,the half space

.

Denote the elements of Rn+1
+ , X as (x, y) such that x ∈ Rn, and y ∈ (0,∞).

The boiled down Dirichlet problem in (4):

∇ · (∇u(x)) = ∆u = 0 inRn+1
+

u = f in ∂Rn+1
+ (= Rn)

(5)

We will assume f to be in certain space when it’s required.
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Example on Half-Space(Cont...)

Dirichlet Problem: ∆u(x, y) = 0 on Rn+1
+ ; u(x, 0) = f(x) on Rn .

The solution of this problem for any Ω:

u(X) = −
∫
∂Ω

f(z)
∂G(X, z)

∂ν
dS(z)

G(X,Z) is called as “Green’s function”, completely determined by the domain (Not quite easy
to find!! ).

For Rn+1
+ :

∂G

∂ν
(X, z) =

2y

c

1

|X − z|n+1
; X = (x, y)

∴ u(X) =
2y

c

∫
Rn

f(z)dz

|X − z|n+1
; X ∈ Rn+1

+

ΛIdf(x) = −∂u

∂y
(x, 0) = C(n)P.V.

∫
Rn

f(x)− f(z)

|x− z|n+1( 1
2
·2)

dz︸ ︷︷ ︸
Fractional Laplacian

The expression is well defined for f ∈ C2(Rn).
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to find!! ).

For Rn+1
+ :

∂G

∂ν
(X, z) =

2y

c

1

|X − z|n+1
; X = (x, y)

∴ u(X) =
2y

c

∫
Rn

f(z)dz

|X − z|n+1
; X ∈ Rn+1

+

ΛIdf(x) = −∂u

∂y
(x, 0) = C(n)P.V.

∫
Rn

f(x)− f(z)

|x− z|n+1

( 1
2
·2)

dz︸ ︷︷ ︸
Fractional Laplacian

The expression is well defined for f ∈ C2(Rn).
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Example on Half-Space(Cont...)

Dirichlet Problem: ∆u(x, y) = 0 on Rn+1
+ ; u(x, 0) = f(x) on Rn .

The solution of this problem for any Ω:

u(X) = −
∫
∂Ω

f(z)
∂G(X, z)

∂ν
dS(z)

G(X,Z) is called as “Green’s function”, completely determined by the domain (Not quite easy
to find!! ).

For Rn+1
+ :

∂G

∂ν
(X, z) =

2y

c

1

|X − z|n+1
; X = (x, y)

∴ u(X) =
2y

c

∫
Rn

f(z)dz

|X − z|n+1
; X ∈ Rn+1

+

ΛIdf(x) = −∂u

∂y
(x, 0) = C(n)P.V.

∫
Rn

f(x)− f(z)

|x− z|n+1( 1
2
·2)

dz︸ ︷︷ ︸
Fractional Laplacian

The expression is well defined for f ∈ C2(Rn).
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Thank You!

L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, Vol. 19,
American Mathematical Society, 1998.

G. Guhlmann, Inverse Problems: An Introduction,
IPAM Tutorial Notes, 2003.

L. Borcea, “Electrical impedance tomography,” Inverse Problems, vol. 18, no. 6,
pp. R99–R136, 2002.
“https://public.websites.umich.edu/~borcea/Publications/EIT.pdf”
“doi:10.1088/0266-5611/18/6/201” (For EIT)
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