LSU Communicating math

This presentation was created as part of the Communicating Math course (Spring 2025) within the graduate program at LSU. For this course, students are required to identify a mentor within the department (who may or may not be their PhD supervisor) and select an interesting topic for both a presentation and a written exposition.

Sayandeep S	ark	ar		
Introduction	$_{\rm to}$	DtN	Map	

Introduction to Dirichlet-to-Neumann Map

An example-oriented approach

Sayandeep Sarkar Mentor: Prof. Andrei Tarfulea LOUISIANA STATE UNIVERSITY May 1,2025

Sayandeep Sarkar Introduction to DtN Map 4日 * 4日 * 4日 * 4日 * 4日 * 4日 *

Table of Contents

1 A real life context

2 Definition

3 Construction of an example

- キロト キ団ト キヨト キヨト ヨー のへで

Sayandeep Sarkar Introduction to DtN Map

LSU

May, 2025

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへで

LSU

A "black-box"

Sayandeep Sarkar	
Introduction to DtN Map	May, 2025

A little bit of school physics (in 1D)

Let $\gamma(x)$ denote the conductivity of the wire('length' [0,L]) at x.

May, 2025

Sayandeep Sarkar Introduction to DtN Map - * ロ * * 個 * * 注 * * 注 * ・ 注 ・ の < @

A little bit of school physics (in 1D)

Let $\gamma(x)$ denote the conductivity of the wire('length' [0,L]) at x.

Resistivity $R(x,y) = \int_y^x \frac{1}{\gamma(z)} dz.$

Sayand	leep Sa	ark	ar	
Introd	uction	$_{\mathrm{to}}$	DtN	Map

A little bit of school physics (in 1D)

Let $\gamma(x)$ denote the conductivity of the wire('length' [0,L]) at x.

Resistivity $R(x,y) = \int_y^x \frac{1}{\gamma(z)} dz$. For steady state current, by Ohm's law:

$$\underbrace{u(x) - u(0)}_{x \to y} = -I \cdot R(x, 0) = -I \int_0^x \frac{dy}{\gamma(y)}$$

Voltage difference between x and 0

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

A little bit of school physics (in 1D)

Let $\gamma(x)$ denote the conductivity of the wire('length' [0,L]) at x.

Resistivity $R(x,y) = \int_y^x \frac{1}{\gamma(z)} dz$. For steady state current, by Ohm's law:

$$\underbrace{u(x) - u(0)}_{x \to y} = -I \cdot R(x, 0) = -I \int_0^x \frac{dy}{\gamma(y)}$$

Voltage difference between x and 0

Differentiate both side: $\gamma(x)u'(x) = -I$

 $\stackrel{\text{diff}}{\Rightarrow} (\gamma(x)u'(x))' = 0 \tag{1}$

A little bit of school physics (in 1D)

Let $\gamma(x)$ denote the conductivity of the wire ('length' [0,L]) at x.

Resistivity $R(x,y) = \int_y^x \frac{1}{\gamma(z)} dz$. For steady state current, by Ohm's law:

$$\underbrace{u(x) - u(0)}_{u(x) - u(0)} = -I \cdot R(x, 0) = -I \int_0^x \frac{dy}{\gamma(y)}$$

Voltage difference between x and 0

Differentiate both side: $\gamma(x)u'(x) = -I$

$$\stackrel{\text{diff}}{\Rightarrow} (\gamma(x)u'(x))' = 0 \tag{1}$$

What can we measure directly?

A little bit of school physics (in 1D)

Let $\gamma(x)$ denote the conductivity of the wire ('length' [0,L]) at x.

Resistivity $R(x,y) = \int_y^x \frac{1}{\gamma(z)} dz$. For steady state current, by Ohm's law:

$$\underbrace{u(x) - u(0)}_{x \to y} = -I \cdot R(x, 0) = -I \int_0^x \frac{dy}{\gamma(y)}$$

Voltage difference between x and 0

Differentiate both side: $\gamma(x)u'(x) = -I$

$$\stackrel{\text{diff}}{\Rightarrow} (\gamma(x)u'(x))' = 0 \tag{1}$$

What can we measure directly? (making u(0) = 0, I = 1)

$$\{u(0), u(L), \gamma(0)u'(0), \gamma(L)u'(L)\} = \{0, \int_0^L \frac{dy}{\gamma(y)}, 1, 1\}$$

Sayandeep Sarkar Introduction to DtN Map

= 990

In higher dimension

 $\Omega' \subset \Omega \subset \mathbb{R}^n.$

$$\underbrace{i(x)}_{\text{not independent of } x} = -\gamma(x)\nabla u(x)$$

Sayandeep Sa	ark	ar	
Introduction	$_{\rm to}$	DtN	Map

In higher dimension

 $\Omega' \subset \Omega \subset \mathbb{R}^n.$

$$\underbrace{i(x)}_{\text{not independent of } x} = -\gamma(x)\nabla u(x)$$

Steady state current: $\int_{\partial\Omega'} i(x) \cdot \nu(x) dS(x) = 0.$

$$\stackrel{IBP}{\Rightarrow} \int_{\Omega'} \nabla \cdot i(x) dx = 0 \ \, \forall \Omega' \subset \Omega$$

Sayandeep 8	Sark	ar		
Introduction	n to	DtN	Ma	p

In higher dimension

 $\Omega' \subset \Omega \subset \mathbb{R}^n.$

$$\underbrace{i(x)}_{\text{not independent of } x} = -\gamma(x)\nabla u(x)$$

Steady state current: $\int_{\partial\Omega'} i(x) \cdot \nu(x) dS(x) = 0.$

$$\stackrel{IBP}{\Rightarrow} \int_{\Omega'} \nabla \cdot i(x) dx = 0 \ \, \forall \Omega' \subset \Omega$$

$$\Rightarrow \nabla \cdot i(x) = \nabla \cdot (\gamma(x) \nabla u(x)) = 0 \text{ in } \Omega$$

Sayandeep Sarkar Introduction to DtN Map

Prelude

In general we can get an equation in higher dimension analogous to (1):

Voltage equation		
	$\nabla\cdot(\gamma(x)\nabla u(x))=0,\;x\in\Omega$	(3)

Prelude

In general we can get an equation in higher dimension analogous to (1):

Voltage equation		
	$\nabla\cdot(\gamma(x)\nabla u(x))=0,\;x\in\Omega$	(3)

Define

$$S := \{ (f,g) \in C^{\infty}(\partial\Omega) \times C^{\infty}(\partial\Omega) : f = u|_{\partial\Omega}, g = \gamma \frac{\partial u}{\partial\nu}|_{\partial\Omega}, u \text{ satisfies } (3) \}.$$

May, 2025

Prelude

In general we can get an equation in higher dimension analogous to (1):

Voltage equation		
	$\nabla\cdot(\gamma(x)\nabla u(x))=0,\;x\in\Omega$	(3)

Define

$$S := \{(f,g) \in C^{\infty}(\partial\Omega) \times C^{\infty}(\partial\Omega) : f = u|_{\partial\Omega}, g = \gamma \frac{\partial u}{\partial\nu}|_{\partial\Omega}, u \text{ satisfies (3)} \}.$$

 $\Lambda_{\gamma}(f) = g$ is a well defined map. The impedence Tomography problem is to infer data about γ from the DtN map.

May, 2025

Table of Contents

1 A real life context

2 Definition

3 Construction of an example

- キロト キ団ト キヨト キヨト ヨー のへで

Sayandeep Sarkar Introduction to DtN Map

Sobolev Spaces

Definition $(H^k(\Omega) \text{ space})$

$$H^{k}(\Omega) = \{ u : \left(\frac{\partial}{\partial x_{1}}\right)^{\alpha_{1}} \cdots \left(\frac{\partial}{\partial x_{n}}\right)^{\alpha_{n}} u \in L^{2}(\Omega) \text{ in weak sense with } \sum_{j=1}^{n} \alpha_{j} \leq k \}$$

Sayandeep Sarkar Introduction to DtN Map

Sobolev Spaces

Definition $(H^k(\Omega) \text{ space})$

$$H^{k}(\Omega) = \{ u : \left(\frac{\partial}{\partial x_{1}}\right)^{\alpha_{1}} \cdots \left(\frac{\partial}{\partial x_{n}}\right)^{\alpha_{n}} u \in L^{2}(\Omega) \text{ in weak sense with } \sum_{j=1}^{n} \alpha_{j} \leq k \}$$

- A The space $C^{\infty}(\overline{\Omega}) \cap H^k(\Omega)$ is dense in $H^k(\Omega)$.
- For Ω to be a bounded domain with smooth boundary we can extend any $u \in H^1(\Omega)$ to its boundary, in fact on the whole \mathbb{R}^n .

We will refer $Tr(u) := u|_{\partial\Omega}$ for H^k functions (Trace of u).

Sobolev Spaces

Definition $(H^k(\Omega) \text{ space})$

$$H^k(\Omega) = \{ u : \left(\frac{\partial}{\partial x_1}\right)^{\alpha_1} \cdots \left(\frac{\partial}{\partial x_n}\right)^{\alpha_n} u \in L^2(\Omega) \text{ in weak sense with } \sum_{j=1}^n \alpha_j \le k \}$$

- B The space $C^{\infty}(\overline{\Omega}) \cap H^k(\Omega)$ is dense in $H^k(\Omega)$.
- **③** For Ω to be a bounded domain with smooth boundary we can extend any $u \in H^1(\Omega)$ to its boundary, in fact on the whole \mathbb{R}^n .

We will refer $Tr(u) := u|_{\partial\Omega}$ for H^k functions (Trace of u).

Definition (Tr $H^k(\partial\Omega)$ Space)

$$\operatorname{Tr} H^k(\Omega) := \{ v \in L^2(\partial\Omega) : \exists u \in H^k(\Omega) \text{ s.t. } Tr(u) = v \}$$

Sayandeep Sa	arkar	
Introduction	to DtN	Map

・ロト ・四ト ・ヨト ・ヨー うくぐ

Now the definition...

Consider the following Partial Differential equation:

Dirichlet Problem		
	$\nabla \cdot (\gamma(x)\nabla u) = 0 \text{ on } \Omega$	(4)
	$u = f \text{ on } \partial \Omega$	(-)

For $f \in \text{Tr}H^2(\partial\Omega)$, we will put $\gamma(x) \in C^1(\overline{\Omega})$. The dirichlet problem admits unique weak solution for such $\gamma(x)$ if $\gamma(x) > \epsilon > 0$.

Now the definition...

Consider the following Partial Differential equation:

Dirichlet Problem		
	$\nabla \cdot (\gamma(x)\nabla u) = 0 \text{ on } \Omega$ $u = f \text{ on } \partial \Omega$	(4)

For $f \in \text{Tr}H^2(\partial\Omega)$, we will put $\gamma(x) \in C^1(\overline{\Omega})$. The dirichlet problem admits unique weak solution for such $\gamma(x)$ if $\gamma(x) > \epsilon > 0$.

Definition (DtN Map)

 $\Lambda_{\gamma}f := (\gamma \nabla u(x)) \cdot \nu(x)|_{\partial\Omega}$. $\nu(x)$ is the outward normal vector at point $x \in \partial\Omega$. The normal derivative of the solution on the boundary is generally referred as 'Neumann data'.

Now the definition...

Consider the following Partial Differential equation:

Dirichlet Problem	
$ abla \cdot (\gamma(x) abla u) = 0 ext{ on } \Omega$	(4)
$u = f ext{ on } \partial \Omega$	(1)

For $f \in \text{Tr}H^2(\partial\Omega)$, we will put $\gamma(x) \in C^1(\overline{\Omega})$. The dirichlet problem admits unique weak solution for such $\gamma(x)$ if $\gamma(x) > \epsilon > 0$.

Definition (DtN Map)

 $\Lambda_{\gamma}f := (\gamma \nabla u(x)) \cdot \nu(x)|_{\partial\Omega}$. $\nu(x)$ is the outward normal vector at point $x \in \partial\Omega$. The normal derivative of the solution on the boundary is generally referred as 'Neumann data'.

In weak sense the range of Λ_{γ} is subset of the dual space $H^{\frac{1}{2}}(\partial\Omega)$.

Sayandeep Sarkar Introduction to DtN Map

Table of Contents

1 A real life context

2 Definition

3 Construction of an example

- イロト イロト イヨト イヨト ヨー のへぐ

Sayandeep Sarkar Introduction to DtN Map

Example on Half-Space

The Laplacian:
$$\Delta u := \frac{\partial^2 u}{\partial x_1^2}$$

Figure: Upper half plane in \mathbb{R}^3 . Note the boundary is actually \mathbb{R}^2

Sayandeep Sarkar Introduction to DtN Map きょうかん 同一 本田 そうせき 不良 そうしゃ

Example on Half-Space

The Laplacian:
$$\Delta u := \frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2}$$

Figure: Upper half plane in \mathbb{R}^3 . Note the boundary is actually \mathbb{R}^2

Sayandeep Sarkar Introduction to DtN Map きょうかん 同一 本田 そうせき 不良 そうしゃ

Construction of an example $\bigcirc{\bullet}{\circ}{\circ}$

Example on Half-Space

The Laplacian:
$$\Delta u := \frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2} + \dots + \frac{\partial^2 u}{\partial x_n^2}$$

Figure: Upper half plane in \mathbb{R}^3 . Note the boundary is actually \mathbb{R}^2

Sayandeep Sarkar Introduction to DtN Map ・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つくぐ

Construction of an example $\bigcirc \bigcirc \bigcirc \bigcirc$

Example on Half-Space

The Laplacian: $\Delta u := \frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2} + \dots + \frac{\partial^2 u}{\partial x_n^2}$ Take $\gamma(x)$ to be **Id** so that $\gamma \nabla u(x) = \nabla u(x)$.

Figure: Upper half plane in \mathbb{R}^3 . Note the boundary is actually \mathbb{R}^2

Sayandeep Sarkar Introduction to DtN Map

Construction of an example $\bigcirc \bigcirc \bigcirc \bigcirc$

Example on Half-Space

The Laplacian: $\Delta u := \frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2} + \dots + \frac{\partial^2 u}{\partial x_n^2}$ Take $\gamma(x)$ to be **Id** so that $\gamma \nabla u(x) = \nabla u(x)$. Take $\Omega = \underbrace{\mathbb{R}^n \times (0, \infty)}_{\mathbb{R}^{n+1}_+, \text{the half space}}$.

Denote the elements of \mathbb{R}^{n+1}_+ , X as (\mathbf{x}, y) such that $\mathbf{x} \in \mathbb{R}^n$, and $y \in (0, \infty)$.

Figure: Upper half plane in \mathbb{R}^3 . Note the boundary is actually \mathbb{R}^2

Sayand	leep Sa	ark	ar	
Introd	uction	$_{\mathrm{to}}$	DtN	Map

イロト イ団ト イヨト イヨト

-

Sayandeep Sarkar

Introduction to DtN Map

Construction of an example 000

Example on Half-Space

The Laplacian:
$$\Delta u := \frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2} + \dots + \frac{\partial^2 u}{\partial x_n^2}$$

Take $\gamma(x)$ to be **Id** so that $\gamma \nabla u(x) = \nabla u(x)$.
Take $\Omega = \underbrace{\mathbb{R}^n \times (0, \infty)}_{\mathbb{R}^{n+1}_+, \text{the half space}}$.

Denote the elements of \mathbb{R}^{n+1}_+ , X as (\mathbf{x}, y) such that $\mathbf{x} \in \mathbb{R}^n$, and $y \in (0, \infty)$.

The boiled down **Dirichlet problem** in (4):

$$\nabla \cdot (\nabla u(x)) = \Delta u = 0 \text{ in } \mathbb{R}^{n+1}_+$$

$$u = f \text{ in } \partial \mathbb{R}^{n+1}_+ (= \mathbb{R}^n)$$
(5)

Figure: Upper half plane in \mathbb{R}^3 . Note the boundary is actually \mathbb{R}^2

3

LSU

We will assume f to be in certain space when it's required.

イロト 不同下 不同下 不同下 May, 2025

Construction of an example $\bigcirc \bigcirc \bigcirc$

Example on Half-Space(Cont...)

Dirichlet Problem: $\Delta u(\mathbf{x}, y) = 0$ on \mathbb{R}^{n+1}_+ ; $u(\mathbf{x}, 0) = f(\mathbf{x})$ on \mathbb{R}^n . The solution of this problem for any Ω :

$$u(X) = -\int_{\partial\Omega} f(\mathbf{z}) \frac{\partial G(X, \mathbf{z})}{\partial\nu} dS(\mathbf{z})$$

Sayandeep Sarkar Introduction to DtN Map

Construction of an example $\bigcirc \bigcirc \bigcirc$

Example on Half-Space(Cont...)

Dirichlet Problem: $\Delta u(\mathbf{x}, y) = 0$ on \mathbb{R}^{n+1}_+ ; $u(\mathbf{x}, 0) = f(\mathbf{x})$ on \mathbb{R}^n . The solution of this problem for any Ω :

$$u(X) = -\int_{\partial\Omega} f(\mathbf{z}) \frac{\partial G(X, \mathbf{z})}{\partial\nu} dS(\mathbf{z})$$

G(X, Z) is called as "Green's function", completely determined by the domain (*Not quite easy to find!!*).

Example on Half-Space(Cont...)

Dirichlet Problem: $\Delta u(\mathbf{x}, y) = 0$ on \mathbb{R}^{n+1}_+ ; $u(\mathbf{x}, 0) = f(\mathbf{x})$ on \mathbb{R}^n . The solution of this problem for any Ω :

$$u(X) = -\int_{\partial\Omega} f(\mathbf{z}) \frac{\partial G(X, \mathbf{z})}{\partial\nu} dS(\mathbf{z})$$

G(X, Z) is called as "Green's function", completely determined by the domain (*Not quite easy to find!!*).

Example on Half-Space(Cont...)

Dirichlet Problem: $\Delta u(\mathbf{x}, y) = 0$ on \mathbb{R}^{n+1}_+ ; $u(\mathbf{x}, 0) = f(\mathbf{x})$ on \mathbb{R}^n . The solution of this problem for any Ω :

$$u(X) = -\int_{\partial\Omega} f(\mathbf{z}) \frac{\partial G(X, \mathbf{z})}{\partial\nu} dS(\mathbf{z})$$

G(X, Z) is called as "Green's function", completely determined by the domain (*Not quite easy to find!!*).

Sayandeep Sarkar Introduction to DtN Map

May, 2025

Example on Half-Space(Cont...)

Dirichlet Problem: $\Delta u(\mathbf{x}, y) = 0$ on \mathbb{R}^{n+1}_+ ; $u(\mathbf{x}, 0) = f(\mathbf{x})$ on \mathbb{R}^n . The solution of this problem for any Ω :

$$u(X) = -\int_{\partial\Omega} f(\mathbf{z}) \frac{\partial G(X, \mathbf{z})}{\partial\nu} dS(\mathbf{z})$$

G(X, Z) is called as "Green's function", completely determined by the domain (*Not quite easy to find!!*).

Thank You!

- L. C. Evans, *Partial Differential Equations*, Graduate Studies in Mathematics, Vol. 19, American Mathematical Society, 1998.
- G. Guhlmann, *Inverse Problems: An Introduction*, IPAM Tutorial Notes, 2003.
- L. Borcea, "Electrical impedance tomography," *Inverse Problems*, vol. 18, no. 6, pp. R99-R136, 2002.
 "https://public.websites.umich.edu/~borcea/Publications/EIT.pdf"
 "doi:10.1088/0266-5611/18/6/201" (For EIT)

イロト イポト イヨト イヨト

I NOR