LSU Communicating math

This presentation was created as part of the Communicating Math course (Spring 2025) within
the graduate program at LSU. For this course, students are required to identify a mentor within
the department (who may or may not be their PhD supervisor) and select an interesting topic for
both a presentation and a written exposition.

andeep Sarkar




Introduction to Dirichlet-to-Neumann Map
An example-oriented approach

Sayandeep Sarkar
Mentor: Prof. Andrei Tarfulea

LoUISIANA STATE UNIVERSITY
May 1,2025

Sayandeep Sarkar




A real life context
[ Jelele]e}

Table of Contents

A real life context

ayandeep Sarkar

Introduction to DtN Map



A real life context

u(0)

Sayandeep Sarkar

Introduction to DtN Map



A real life context
[e]e] lele}

A little bit of school physics (in 1D)

Let y(z) denote the conductivity of the wire( ‘length’ [0,L]) at x.
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Resistivity
R(x,y) = f; %dz.
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A little bit of school physics (in 1D)

Let y(z) denote the conductivity of the wire( ‘length’ [0,L]) at x.

Resistivity

R(z,y) = f; %dz. For steady state current, by Ohm'’s law:
u(z) —u(0) =—-I-R(z,0)=—-1I —
_— o 1Y)

Voltage difference
between x and 0
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A little bit of school physics (in 1D)

Let y(z) denote the conductivity of the wire( ‘length’ [0,L]) at x.

Resistivity
R(z,y) = f; %dz. For steady state current, by Ohm'’s law:
u(z) —u(0) =—-I-R(z,0)=—-1I —
_— o 1Y)
Voltage difference
between x and 0
Differentiate both side: vy(z)u'(xz) = —T
diff
= (y(@)u'(x)) =0 (1)
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Let y(z) denote the conductivity of the wire( ‘length’ [0,L]) at x.

Resistivity
R(z,y) = f; %dz. For steady state current, by Ohm'’s law:
u(z) —u(0) =—-I-R(z,0)=—-1I —
_— o 1Y)
Voltage difference
between x and 0
Differentiate both side: vy(z)u'(xz) = —T
diff
= (y(@)u'(x)) =0 (1)

What can we measure directly?

Sayandeep Sarkar




A real life context
[e]e] lele}

A little bit of school physics (in 1D)

Let y(z) denote the conductivity of the wire( ‘length’ [0,L]) at x.

Resistivity
R(z,y) = f; %dz. For steady state current, by Ohm'’s law:
u(z) —u(0) =—-I-R(z,0)=—-1I —
_— o 1Y)
Voltage difference
between x and 0
Differentiate both side: vy(z)u'(xz) = —T
diff
= (y(@)u'(x)) =0 (1)

What can we measure directly?

(making u(0) =0, I =1)

{u(0), u(L), 7(0)'(0), v (L) (L)} =10, / % 1,1}
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In higher dimension
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Steady state current:

Jogy i(2) - v(@)dS () = 0.

"B [ V. i(z)dz =0 VQ' C Q
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In higher dimension

Q' CcQcCR™

not independent of =

Steady state current:

Jogy i(2) - v(@)dS () = 0.

IBP
=

V-i(z)dz =0 V' C Q
Q

= V-i(z) =V (y(z)Vu(z)) =0inQ
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V.- (y(z)Vu(z)) =0, z € Q 3)
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Prelude

In general we can get an equation in higher dimension analogous to (1):

V.- (y(z)Vu(z)) =0, z € Q 3)

Define
S:={(f,g9) € C=(00) x C(IN) : f =uloa,g = fyg—ﬂamu satisfies (3)}.
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Prelude

In general we can get an equation in higher dimension analogous to (1):

V.- (y(z)Vu(z)) =0, z € Q 3)

Define
S:={(f,g9) € C=(00) x C(IN) : f =uloa,g = fyg—ﬂamu satisfies (3)}.

Ay (f) = g is a well defined map. The impedence Tomography problem is to infer data about

——
DtN map
from the DtN map.
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Sobolev Spaces

HR(Q) = {u: (i)al (%)an u € L*(Q2) in weak sense with > oy <k}
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Sobolev Spaces

HR(Q) = {u: (i)al (%)an u € L*(Q2) in weak sense with > oy <k}

@& The space C*(Q) N H*(Q) is dense in H*(Q).
@ For 2 to be a bounded domain with smooth boundary we can extend any
u € H'(Q) to its boundary, in fact on the whole R™.

We will refer Tr(u) := u|sq for H* functions (Trace of u).
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Sobolev Spaces

HR(Q) = {u: (i)al (%)an u € L*(Q2) in weak sense with > oy <k}

@& The space C*(Q) N H*(Q) is dense in H*(Q).
@ For 2 to be a bounded domain with smooth boundary we can extend any
u € H'(Q) to its boundary, in fact on the whole R™.

We will refer Tr(u) := u|sq for H* functions (Trace of u).

Definition (Tr H*(99) Space)

Tr H*(Q) := {v € L*(9Q) : Fu € H*(Q)s.t. Tr(u) = v}
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Now the definition...

Consider the following Partial Differential equation:

Dirichlet Problem

V- (y(z)Vu) =00on

u = fond) )

For f € TrH?(0Q), we will put y(z) € C*(Q). The dirichlet problem admits unique weak
solution for such ~(z) if y(z) > € > 0.
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Now the definition...

Consider the following Partial Differential equation:

Dirichlet Problem

V- (y(z)Vu) =00on

u = fond) )

For f € TrH?(0Q), we will put y(z) € C*(Q). The dirichlet problem admits unique weak
solution for such ~(z) if y(z) > € > 0.

Definition (DtN Map)

Ay f = (yVu(x)) - v(x)|an. v(x) is the outward normal vector at point z € 9.
The normal derivative of the solution on the boundary is generally referred as ‘Neumann data’.
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Now the definition...

Consider the following Partial Differential equation:

Dirichlet Problem

V- (y(z)Vu) =00on

u = fond) )

For f € TrH?(0Q), we will put y(z) € C*(Q). The dirichlet problem admits unique weak
solution for such ~(z) if y(z) > € > 0.

Definition (DtN Map)

Ay f = (yVu(x)) - v(x)|an. v(x) is the outward normal vector at point z € 9.
The normal derivative of the solution on the boundary is generally referred as ‘Neumann data’.

In weak sense the range of A is subset of the dual space Hz (092).
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Example on Half-Space

8%u
2
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The Laplacian: Awu :=

Figure: Upper half
plane in R3. Note
the boundary is
actually R2

Sayandeep Sarkar

Introduction to DtN Map



Construction of an example

{ Je]

Example on Half-Space

The Laplacian: Awu := f&ur@
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Construction of an example
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Example on Half-Space

The Laplacian: Awu := &Jr&qk.. + 2y

2 2
oz ox3

Figure: Upper half
plane in R3. Note
the boundary is
actually R2

Sayandeep Sarkar

Introduction to DtN Map



Construction of an example
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Example on Half-Space

The Laplacian: Au := ‘f—ng%qL... + gz—;‘
Il IZ x’ll
Take y(z) to be Id so that yVu(z) = Vu(z).

Figure: Upper half
plane in R3. Note
the boundary is
actually R2
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Example on Half-Space

The Laplacian: Au := ‘f—ng%qL... + gz—;‘
Il IZ x’ll
Take y(z) to be Id so that yVu(z) = Vu(z).
Take @ = R" x (0,00)
N——

n+1
Ry

,the half space
Denote the elements of JRT”, X as (x,y) such that x € R", and y € (0, 00).

Figure: Upper half
plane in R3. Note
the boundary is
actually R2




Construction of an example

{ Je]

Example on Half-Space

The Laplacian: Au := ‘?—ng%Jr... + gz—;‘
Il IZ x’ll
Take y(z) to be Id so that yVu(z) = Vu(z).
Take @ = R" x (0,00)
N——

n+1
Ry

,the half space

Denote the elements of JRT”, X as (x,y) such that x € R", and y € (0, 00).
Figure: Upper half
plane in R3. Note

The boiled down Dirichlet problem in (4): ‘;E:uz?f}l’nﬁgry is

V- (Vu(z)) = Au=0inR}!

u=findR}(=R") )

We will assume f to be in certain space when it’s required.
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Construction of an example
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Example on Half-Space(Cont...)

Dirichlet Problem: Au(x,y) =0 on R} u(x,0) = f(x) on R" .
The solution of this problem for any 2:

ux) == [ @ ® 5 s
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Example on Half-Space(Cont...)

Dirichlet Problem: Au(x,y) =0 on R} u(x,0) = f(x) on R" .
The solution of this problem for any 2:

0G(X,z
u(x) =~ [ 1@ 20 500)
Ele) v
G(X, Z) is called as “Green’s function”, completely determined by the domain (Not quite easy

to find!!).
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Example on Half-Space(Cont...)

Dirichlet Problem: Au(x,y) =0 on R} u(x,0) = f(x) on R" .
The solution of this problem for any 2:

u(x) =~ [ 1@ 20 500)
oQ

G(X, Z) is called as “Green’s function”, completely determined by the domain (Not quite easy
to find!!).

oG 2y 1 ]
By (%2) = ¢ |X =zt

_2y f(z)dz . n+1
u(X)_?/an,XER+

For R X = (x,9)
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Construction of an example
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Example on Half-Space(Cont...)

Dirichlet Problem: Au(x,y) =0 on R} u(x,0) = f(x) on R" .
The solution of this problem for any 2:
0G(X,z
u(x) =~ [ 1@ 20 500)
o0 v

G(X, Z) is called as “Green’s function”, completely determined by the domain (Not quite easy
to find!!).

oG 2 1
n+1 . — = 7y7' =
For R}™ : 8V(X,z) ¢ X — gt X =(x,y)

_ 2y f(z)dz . n+1

u(x) = =2 /Rni\ o X RS
ou f(x)— f(=z) — =
A - %0 =cmpyv. [ L2
1af ) =~ 0 = Cp. [ S ,
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Construction of an example

o] ]

Example on Half-Space(Cont...)

Dirichlet Problem: Au(x,y) =0 on R} u(x,0) = f(x) on R" .
The solution of this problem for any 2:
0G(X,z
u(x) =~ [ 1@ 20 500)
o0 v

G(X, Z) is called as “Green’s function”, completely determined by the domain (Not quite easy
to find!!).

oG 2y 1
n+1 . — = —— =
For R}™ : 8V(X,z) ¢ X — gt X =(x,y)
_ 2y f(z)dz . n+1
W)= [ R xR
ou f(x) — f(=) a—
A = — = P.V. —_— e _
1af 0 = = (0 = Cp- | S

Fractional Laplacian

The expression is well defined for f € C?(R™).
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@ L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, Vol. 19,
American Mathematical Society, 1998.

@ G. Guhlmann, Inverse Problems: An Introduction,
IPAM Tutorial Notes, 2003.

@ L. Borcea, “Electrical impedance tomography,” Inverse Problems, vol. 18, no. 6,
pp.- R99-R136, 2002.
“https://public.websites.umich.edu/~borcea/Publications/EIT.pdf”
“doi:10.1088/0266-5611/18/6/201” (For EIT)
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